PHYSICAL REVIEW E VOLUME 55, NUMBER 2 FEBRUARY 1997

Radiation by charged particles in honuniform acceleration:
The inapplicability of Larmor’s formula
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A recent work which explained synchrotron radiation as an inverse Compton gRedtieu and W. I.
Axford, Astrophys. J416, 700(1993] highlighted the importance of coherence in characterizing the radiation
from a relativistic electron. In this paper we demonstrate explicitly that the well-known Larmor formula for the
classical radiative loss rate of a circulating charge is only valid in the limit of constant acceleration. When the
acceleration varies significantly over a “radiation formation length,” the radiation properties are determined
by coherent interference in an orbit-dependent way, and spectra and total loss rates are modified nontrivially.
We illustrate these effects by considering a representative trajectory where analytical results are available.
[S1063-651%96)01812-0

PACS numbds): 41.60—m, 03.50.De

The relativistic generalization of Larmor’s formula] for ~ small as (ankT)l’zc/eB, the gyroradius of a proton. The
the radiative energy loss rate of an electron accelerated transatio of the former distance to the latter 3s10; again the

versely at velocity is given by field is not necessarily smooth from the radiation viewpoint.
We will calculate the radiative loss rate for a two-

dE 2e2 [dv\? dimensional synchrotron orbit, with spatial coherence effects

di -3¢ 4(5) , (1) explicitly taken into account. This approach will give correct

results for field inhomogeneities at all length scales, which

can then be compared wit). As starting point we use the
where y=(1-v?c?) ~Y2 This result has widely been used classical formula for the emissivity, defined here as the en-
to calculate losses in astrophysical plasmas and in circulagrgy output per unit solid angle per unit angular frequency,

laboratory accelerators. It can be integrated with respect tqhen a beam of radiation intercepts the observer’s line of
time to produce an average loss rate along the electron trgight[2]:

jectory in the limit of constant or slowly varying accelera-
tion. Thus, e.g., the brightness of nonthermal emission from

supernova remnants is modeled by a power-law energy dis- d’E _ e’o? f iw(7—xcosd/c)§ | 2

tribution of relativistic electrons and a mean magnetic field dodQ ~ 472c3|| ) VY® 7

[3]. Although it is well known that such fields are far from

smooth, more realistic treatments invariably assume that it +sin20f v gl eTxcosle)g 12| 2)
remains smooth in small spatial scald$.

In this paper we demonstrate that Ed), though correct

instantaneously, can lead to large errors if it is applied torne integral over timer can be interpreted as a coherent
calculate radiative loss rates in situations when the acceleraymmation of outgoing radiation amplitudes from all parts of
tion varies over length scales smaller than the so-called “rathe particle’s orbif1,5].

parts of the formation length, the resulting loss rate is nokyaluates a generic form:

necessarily given by the instantaneous Poynting flux at any

time. Such small scale field variations are commonplace, rel-

evant phenomena. In laboratory accelerators, such as the F(w):f
Hadron Electron Ring Accelerat§ERA) bending magnets

at DESY, 2 /vy is about a few cm, but wigglers or undulators

with fields varying over wavelengths shorter than 1 cm can :
be present in sections of any synchrotron beamline. Considd the case of large» andy(7)>0 for all real values of,, by
another example, viz., synchrotron radiation by cosmic rayhoosing a path of integration in the complex plane which
electrons in the magnetic fiel of our galaxy. The distance Maintains a small but positive imaginary part. It can then be
2r/y given above then equalsic®/eB (motion along the ~ shown([6] that F(w) is vanishingly small except when the
field is ignored. It is generally believed that the inter- phase is stationary a¥(7s)=0, around which a path of
stellar field is frozen into a thermal plasma of temperaturesteepest descent must be constructed as a “link” to result in
T < 10* K, and can therefore be turbulent over distances afinite contributions. The standard version of this methép

f(r)e'e"dr (3
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dE 9 €?

treats the simple case whéa 7 is unique andb) the real dE a2
part of ¢ at 7= g, viz., #,(7s), vanishes. It gives at 290@25 < V.
t=0
1/2
Flw)~ 2m f —owi(79) 4 The approximate formula derived above can be compared
(0)= wi(7) (ro)e : 4 with Larmor's theorem, where the corresponding loss rate
|

obtained by applyingl) to the same situatiof.e., by setting

where y; denotes the imaginary part gf. |dv/dt|=v0o=co) is

Equation (4) is appropriate to solving the two- )
- : : - o dE 2e
dimensional constant acceleration problem since crit@ia 2> 402 @
and (b) are both satisfied. We can write dt) 3¢ 0

vy=vCodd,7, vy=vSiNQ,7, Xx=y=0 atr=0 (5)  Since (1) mustgive exact results in the limit of constant

acceleration, our estimate dfE/dt carries a small error of

and locate the observer by the elevation and azimuthal angles 14% in the normalization constant 9/5The reasonable
(6,¢), both measured with respect to theaxis. As is well ~agreement indicates that the method we employed in the
known, we can then expand the electron position and velocevaluation of integrals can reliably be extended to the treat-

ity in powers of 7, with the time origint given by ment of more complicated orbits. _
We will indeed proceed to calculate the loss rate in a
b=t ©6) situation where the acceleration is no longer constant. We
=Qt.

introduce an orbit of the forng5), but with the replacement

Qo—Qo(1+y?Q372)Y2 This is a scenario where the

o et 2 spectlc ntance o e, Mivarged patce experiences a spatially roruniom mag
Y gy etic field which increases symmetrically before and after the

orbit hich are not coherently related the point of eres MOMeNtr 0. and equals the minimum value G only at
y P ‘7=0. As long as the field satisfiegB<B.=m?c%/e% ev-

2
To O(1/¥°) Eq. (2) now reads erywhere, radiation reaction effects due to particle recoil will

remain unimportant. Equatio6), which determines our
d’E  e%p?

* i hoice of the time origirt, now reads
= Q. rele(g 7|2 c ,
dwdQ 472 f—:x: 0
) ¢=Qot(1+ Q57" ®)
—o The scenario is interesting because Larmor’s radiative loss

rate (1) att=7=0 is determined by the acceleration at this
where instance; i.e., it is given by7) with Q being the minimum
circular frequency. It is intuitively obvious that such a loss

17/ 1 Qo rate cannot be correct, since it does not take into account the
P(7)= 5[ —+ 62|+ contributions from the entire coherence length in the neigh-
Y borhood of ther=0 position, where more radiation can be
_ expected from the higher acceleration. To demonstrate this in
Now (75)=0 when a simple fashion, we will consider the extreme limit
Q,>Qg4, when the “beam crossing time” is-2/yyQQ4,
i /1 1/2 and is governed by the geometric mean of the two frequen-
TSZQ—O ;2+ 6? cies. ToO(1/9%) (2) reads, for this orbit,
itution i i d?’E _ ew?[| (= 202,212, 2
Sut_)stl_tu_tlon_m(4) then leads to an approximate value for the = - f Qor(1+ 920272 Vit
emissivity given by dodQ 4mc||) -
d’E o (1 12 6? + 62 f e Idr 2}, (9)
—_—— = 3 + 02 1+ 1.2, 22 —®
dowdQ 27cQq\y 1y + 6
< e—(zw/3w0)(1/y2+ 02)3’2. where
2.3 .20202.5
With the help of tableg7], integrations can be performed (r) = - 2| s Qg7 LY 0017
over o and the 6 part of the solid angle, viz., 2|\ y? 3 5 '

Jadwf ™2 cossdé. The resultdE/d¢, is converted to a to-

tal radiative loss raté E/dt instantaneous at the time origin ~ Evaluation of the above integrals is slightly more difficult
t=0 by using the relationd¢/dt) =, which is a conse- than before, because there are two complex stationary
guence of(6). We obtain phases, viz.,
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FIG. 1. Variable acceleration synchrotron emissivity for radiation with polarizatiord,incosd), as given by the second term ()
in the limit >, plotted as a function of frequency. The radiation propagates in the diregtidiy. The x axis is scaled in units of
ol (Y3QQ,), and they axis is scaled in units of?y?/c. The dashed line represents the stationary phase approximation to the integral,
while the solid line represents the exact result as given bytwesubroutinebo1AkF, which is designed to numerically integrate rapidly
oscillating integrands with high accuracy.

1 1 12 cal of the “beam crossing time,” as expected from the stan-
Ts= =———==(Mm+i), m=x1, v :(—2 + 02) dard behavior of synchrotron radiation.
V2yy' Qo) Y In order to assess the errors made, we numerically com-

) puted with high accuracy the integrals (® and compared
and moreovery,(ts) is now finite. To eliminate the rapid them with (10). We find that, as expected, any such errors
oscillations atr= 7, the path of steepest descent is choserbecome negligible at large frequencies where most of the
to bey=m(1- \/E)x_ The largew limit of (3) is then given  synchrotron radiation power is emitted. At lower frequencies
by a constantsystematic offset exists which does not depend on

the values ofy, ()4, and(};. As illustration, we plot in Fig.
1 the two spectra corresponding to the second integrd)in

F(w)=2> [1+im(1-2)] To arrive at a total loss rate we note, as before, that we
Ts can integraté€10) over w and theé part of the solid angle to
7T|;’fr| 12 . pr(_)duced E/d¢. (d E/dt)tzp thgn follows by use of the re-
o f(rg)e” eWimivn), lation (d¢/dt),—o=Q,, which is a consequence ). The
(Y + ;) end result is
where ¢, ; and their derivatives are all evaluatedat 7. g2
This results in the following approximate expression for the gp — 1183 Y3012,
emissivity:
d2E 20 1 1a Whe_:n compared witlﬁ_?), it is evident that Larmor’s for-
=0.272—(yQoQ;) Y = + 62 mula indeed underestimates the loss rate by a factor
dwdQ ¢ Y ~+Q41/Qy>1. Note that this is @ariable factor which rep-
92 resents a genuine difference unrelated to the small and con-
X| 1+ 5—— stant inaccuracy of our approximation method. It is also con-
Uy'+o ceivable that(7) would overestimate the radiation from
x[cosaw+(\/§— 1)sinaw]?e 22, (10) orbits which involve less average acceleration than the in-
stantaneous value &t 0.
wherea=(1/2/5)(yQoQ,) “Y4(1/y?+ 6?)% It is clear that We thank Dr. Davina Innes at MPAE for helpful discus-

the spectrum extends to frequencies? times the recipro-  sions.
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