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Radiation by charged particles in nonuniform acceleration:
The inapplicability of Larmor’s formula

R. Lieu,1 W. I. Axford,2 and J. F. McKenzie2
1Department of Physics, University of Alabama, Huntsville, Alabama 35899
2Max Planck Institut fu¨r Aeronomie, D-37191 Katlenburg-Lindau, Germany

~Received 31 July 1996!

A recent work which explained synchrotron radiation as an inverse Compton effect@R. Lieu and W. I.
Axford, Astrophys. J.416, 700~1993!# highlighted the importance of coherence in characterizing the radiation
from a relativistic electron. In this paper we demonstrate explicitly that the well-known Larmor formula for the
classical radiative loss rate of a circulating charge is only valid in the limit of constant acceleration. When the
acceleration varies significantly over a ‘‘radiation formation length,’’ the radiation properties are determined
by coherent interference in an orbit-dependent way, and spectra and total loss rates are modified nontrivially.
We illustrate these effects by considering a representative trajectory where analytical results are available.
@S1063-651X~96!01812-0#

PACS number~s!: 41.60.2m, 03.50.De
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The relativistic generalization of Larmor’s formula@2# for
the radiative energy loss rate of an electron accelerated tr
versely at velocityv is given by

dE

dt
5
2

3

e2

c
g4S dvdt D

2

, ~1!

whereg5(12v2/c2)21/2. This result has widely been use
to calculate losses in astrophysical plasmas and in circ
laboratory accelerators. It can be integrated with respec
time to produce an average loss rate along the electron
jectory in the limit of constant or slowly varying acceler
tion. Thus, e.g., the brightness of nonthermal emission fr
supernova remnants is modeled by a power-law energy
tribution of relativistic electrons and a mean magnetic fi
@3#. Although it is well known that such fields are far from
smooth, more realistic treatments invariably assume tha
remains smooth in small spatial scales@4#.

In this paper we demonstrate that Eq.~1!, though correct
instantaneously, can lead to large errors if it is applied
calculate radiative loss rates in situations when the acce
tion varies over length scales smaller than the so-called ‘
diation formation length’’ 2r /g, wherer is the orbital radius
of curvature at any point. Owing to the coherent addition
the genuinelyvarying radiation amplitudes from differen
parts of the formation length, the resulting loss rate is
necessarily given by the instantaneous Poynting flux at
time. Such small scale field variations are commonplace,
evant phenomena. In laboratory accelerators, such as
Hadron Electron Ring Accelerator~HERA! bending magnets
at DESY, 2r /g is about a few cm, but wigglers or undulato
with fields varying over wavelengths shorter than 1 cm c
be present in sections of any synchrotron beamline. Cons
another example, viz., synchrotron radiation by cosmic
electrons in the magnetic fieldB of our galaxy. The distance
2r /g given above then equals 2mec

2/eB ~motion along the
field is ignored!. It is generally believed that the inter
stellar field is frozen into a thermal plasma of temperat
T , 104 K, and can therefore be turbulent over distances
551063-651X/97/55~2!/1872~4!/$10.00
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small as (2mpkT)
1/2c/eB, the gyroradius of a proton. Th

ratio of the former distance to the latter is.10; again the
field is not necessarily smooth from the radiation viewpoi

We will calculate the radiative loss rate for a two
dimensional synchrotron orbit, with spatial coherence effe
explicitly taken into account. This approach will give corre
results for field inhomogeneities at all length scales, wh
can then be compared with~1!. As starting point we use the
classical formula for the emissivity, defined here as the
ergy output per unit solid angle per unit angular frequen
when a beam of radiation intercepts the observer’s line
sight @2#:

d2E

dvdV
5

e2v2

4p2c3 FU E vye
iv~t2xcosu/c!dtU2

1sin2uU E vxe
iv~t2xcosu/c!dtU2G . ~2!

The integral over timet can be interpreted as a cohere
summation of outgoing radiation amplitudes from all parts
the particle’s orbit@1,5#.

We employ a powerful mathematical tool that gives go
approximations to the integrals in~2! for the most important
range of synchrotron radiation frequencies. The meth
evaluates a generic form:

F~v!5E
2`

`

f ~t!eivc~t!dt ~3!

in the case of largev andċ(t).0 for all real values oft, by
choosing a path of integration in the complex plane wh
maintains a small but positive imaginary part. It can then
shown @6# that F(v) is vanishingly small except when th
phase is stationary atċ(ts)50, around which a path o
steepest descent must be constructed as a ‘‘link’’ to resu
finite contributions. The standard version of this method@6#
1872 © 1997 The American Physical Society
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55 1873RADIATION BY CHARGED PARTICLES IN . . .
treats the simple case when~a! ts is unique and~b! the real
part of c̈ at t5ts , viz., c̈ r(ts), vanishes. It gives

F~v!.F 2p

vc̈ i~ts!
G 1/2f ~ts!e

2vc i ~ts!, ~4!

wherec i denotes the imaginary part ofc.
Equation ~4! is appropriate to solving the two

dimensional constant acceleration problem since criteria~a!
and ~b! are both satisfied. We can write

vx5vcosVot, vy5vsinVot, x5y50 at t50 ~5!

and locate the observer by the elevation and azimuthal an
(u,f), both measured with respect to thex axis. As is well
known, we can then expand the electron position and ve
ity in powers oft, with the time origint given by

f5V0t. ~6!

For the radiative loss rate at a specific instance of time,
may define the observational azimuth accordingly such
t50. This simplifies the algebra by ignoring parts of t
orbit which are not coherently related to the point of intere

To O(1/g2) Eq. ~2! now reads

d2E

dvdV
5
e2v2

4p2c FU E
2`

`

V0te
ivc~t!dtU2

1u2U E
2`

`

eivc~t!dtU2G ,
where

c~t!5
1

2 F S 1g2 1u2D t1
V0t

3

3 G .
Now ċ(ts)50 when

ts5
i

V0
S 1g2 1u2D 1/2.

Substitution in~4! then leads to an approximate value for t
emissivity given by

d2E

dvdV
.

e2v

2pcV0
S 1g2 1u2D 1/2S 11

u2

1/g21u2D
3e2~2v/3v0!~1/g21u2!3/2.

With the help of tables@7#, integrations can be performe
over v and the u part of the solid angle, viz.
*0

`dv*2p/2
p/2 cosudu. The result,dE/df, is converted to a to-

tal radiative loss ratedE/dt instantaneous at the time origi
t50 by using the relation (df/dt)5V0, which is a conse-
quence of~6!. We obtain
les

c-

e
at

t.

S dEdt D
t50

5V0

dE

df
.

9

5p

e2

c
g4V0

2 .

The approximate formula derived above can be compa
with Larmor’s theorem, where the corresponding loss r
obtained by applying~1! to the same situation~i.e., by setting
udv/dtu5vV0.cV0) is

S dEdt D
Larmor

5
2

3

e2

c
g4V0

2 . ~7!

Since ~1! must give exact results in the limit of constan
acceleration, our estimate ofdE/dt carries a small error of
; 14% in the normalization constant 9/5p. The reasonable
agreement indicates that the method we employed in
evaluation of integrals can reliably be extended to the tre
ment of more complicated orbits.

We will indeed proceed to calculate the loss rate in
situation where the acceleration is no longer constant.
introduce an orbit of the form~5!, but with the replacemen
V0→V0(11g2V1

2t2)1/2. This is a scenario where th
charged particle experiences a spatially nonuniform m
netic field which increases symmetrically before and after
momentt50, and equals the minimum value ofV0 only at
t50. As long as the field satisfiesgB!Bc5m2c3/e\ ev-
erywhere, radiation reaction effects due to particle recoil w
remain unimportant. Equation~6!, which determines our
choice of the time origint, now reads

f5V0t~11g2V1
2t2!1/2. ~8!

The scenario is interesting because Larmor’s radiative
rate ~1! at t5t50 is determined by the acceleration at th
instance; i.e., it is given by~7! with V0 being the minimum
circular frequency. It is intuitively obvious that such a lo
rate cannot be correct, since it does not take into accoun
contributions from the entire coherence length in the nei
borhood of thet50 position, where more radiation can b
expected from the higher acceleration. To demonstrate th
a simple fashion, we will consider the extreme lim
V1@V0, when the ‘‘beam crossing time’’ is;2/gAV0V1,
and is governed by the geometric mean of the two frequ
cies. ToO(1/g2) ~2! reads, for this orbit,

d2E

dvdV
5
e2v2

4p2c FU E
2`

`

V0t~11g2V1
2t2!1/2eivc~t!dtU2

1u2U E
2`

`

eivc~t!dtU2G , ~9!

where

c~t!5
1

2 F S 1g2 1u2D t1
V0

2t3

3
1

g2V0
2V1

2t5

5 G .
Evaluation of the above integrals is slightly more difficu

than before, because there are two complex station
phases, viz.,
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FIG. 1. Variable acceleration synchrotron emissivity for radiation with polarization (sinu,0,2cosu), as given by the second term of~9!
in the limit V1@V0, plotted as a function of frequency. The radiation propagates in the directionu51/g. Thex axis is scaled in units of
v/(g3AV0V1), and they axis is scaled in units ofe2g2/c. The dashed line represents the stationary phase approximation to the int
while the solid line represents the exact result as given by theNAG subroutineD01AKF, which is designed to numerically integrate rapid
oscillating integrands with high accuracy.
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~m1 i !, m561, g85S 1g2 1u2D 21/2

and moreoverc̈ r(ts) is now finite. To eliminate the rapid
oscillations att5ts , the path of steepest descent is chos
to bey5m(12A2)x. The largev limit of ~3! is then given
by

F~v!5(
ts

@11 im~12A2!#

3F puc̈ r u

v~c̈ r
21c̈ i

2!
G 1/2f ~ts!e

2v~c i2 icr !,

wherec r ,i and their derivatives are all evaluated att5ts .
This results in the following approximate expression for t
emissivity:

d2E

dvdV
.0.272

e2v

c
~gV0V1!

21/2S 1g2 1u2D 1/4
3F11

u2

1/g21u2G
3@cosav1~A221!sinav#2e22av, ~10!

wherea5(A2/5)(gV0V1)
21/2(1/g21u2)5/4. It is clear that

the spectrum extends to frequencies;g2 times the recipro-
n

cal of the ‘‘beam crossing time,’’ as expected from the sta
dard behavior of synchrotron radiation.

In order to assess the errors made, we numerically c
puted with high accuracy the integrals in~9! and compared
them with ~10!. We find that, as expected, any such erro
become negligible at large frequencies where most of
synchrotron radiation power is emitted. At lower frequenc
a constantsystematic offset exists which does not depend
the values ofg, V0, andV1. As illustration, we plot in Fig.
1 the two spectra corresponding to the second integral in~9!.

To arrive at a total loss rate we note, as before, that
can integrate~10! overv and theu part of the solid angle to
producedE/df. (dE/dt) t50 then follows by use of the re
lation (df/dt) t505V0, which is a consequence of~8!. The
end result is

dE

dt
51.183

e2

c
g4V0

3/2V1
1/2.

When compared with~7!, it is evident that Larmor’s for-
mula indeed underestimates the loss rate by a fa
;AV1 /V0@1. Note that this is avariable factor which rep-
resents a genuine difference unrelated to the small and
stant inaccuracy of our approximation method. It is also c
ceivable that ~7! would overestimate the radiation from
orbits which involve less average acceleration than the
stantaneous value att50.

We thank Dr. Davina Innes at MPAE for helpful discu
sions.
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